If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6x + y2d) * dy + y(2x + -3y) * dy = 0 Reorder the terms: (dy2 + 6x) * dy + y(2x + -3y) * dy = 0 Reorder the terms for easier multiplication: dy(dy2 + 6x) + y(2x + -3y) * dy = 0 (dy2 * dy + 6x * dy) + y(2x + -3y) * dy = 0 Reorder the terms: (6dxy + d2y3) + y(2x + -3y) * dy = 0 (6dxy + d2y3) + y(2x + -3y) * dy = 0 Reorder the terms for easier multiplication: 6dxy + d2y3 + y * dy(2x + -3y) = 0 Multiply y * dy 6dxy + d2y3 + dy2(2x + -3y) = 0 6dxy + d2y3 + (2x * dy2 + -3y * dy2) = 0 6dxy + d2y3 + (2dxy2 + -3dy3) = 0 Reorder the terms: 6dxy + 2dxy2 + -3dy3 + d2y3 = 0 Solving 6dxy + 2dxy2 + -3dy3 + d2y3 = 0 Solving for variable 'd'. Factor out the Greatest Common Factor (GCF), 'dy'. dy(6x + 2xy + -3y2 + dy2) = 0Subproblem 1
Set the factor 'dy' equal to zero and attempt to solve: Simplifying dy = 0 Solving dy = 0 Move all terms containing d to the left, all other terms to the right. Simplifying dy = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(6x + 2xy + -3y2 + dy2)' equal to zero and attempt to solve: Simplifying 6x + 2xy + -3y2 + dy2 = 0 Reorder the terms: dy2 + 6x + 2xy + -3y2 = 0 Solving dy2 + 6x + 2xy + -3y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-6x' to each side of the equation. dy2 + 6x + 2xy + -6x + -3y2 = 0 + -6x Reorder the terms: dy2 + 6x + -6x + 2xy + -3y2 = 0 + -6x Combine like terms: 6x + -6x = 0 dy2 + 0 + 2xy + -3y2 = 0 + -6x dy2 + 2xy + -3y2 = 0 + -6x Remove the zero: dy2 + 2xy + -3y2 = -6x Add '-2xy' to each side of the equation. dy2 + 2xy + -2xy + -3y2 = -6x + -2xy Combine like terms: 2xy + -2xy = 0 dy2 + 0 + -3y2 = -6x + -2xy dy2 + -3y2 = -6x + -2xy Add '3y2' to each side of the equation. dy2 + -3y2 + 3y2 = -6x + -2xy + 3y2 Combine like terms: -3y2 + 3y2 = 0 dy2 + 0 = -6x + -2xy + 3y2 dy2 = -6x + -2xy + 3y2 Divide each side by 'y2'. d = -6xy-2 + -2xy-1 + 3 Simplifying d = -6xy-2 + -2xy-1 + 3 Reorder the terms: d = 3 + -6xy-2 + -2xy-1Solution
d = {3 + -6xy-2 + -2xy-1}
| 2x^2+-32=0 | | 6(x+5)=12x | | (7/3)-7= | | (n/3)-7= | | Y=-16t^2+32t-30 | | 5(x-7)=x+71 | | c=15h+245 | | (x+9)+(x+9)+(x+9)=P | | a^2+a+a+2=25 | | -b(2-b)= | | 2x-3(x+7)=2(3x-1) | | 8(12-x)=3(x+21) | | 5(a+4)=3(6a+a) | | 5x^2+19x-9=0 | | x+5(6)=12(x) | | -5x+11=8(x+3) | | 4(8)+5=4(8-10) | | -6.9(2s+6)-1.3(3s-5)= | | 4(40)+5=4(40-10) | | -2(x+12)=x-9 | | (2v-7)(2+v)=0 | | 1x+5y=95 | | 4(45)+5=4(45-10) | | x+39=4(5x+4)+4 | | 48-12x=20 | | 2x^3+18x^2-64=0 | | 2+3(x+1)=x | | -2x^3+18x^2-64=0 | | 48-12=20 | | (x+4)+(x+4)+(x+4)=P | | 67.5x^2-45x-112.5=0 | | 5x(x+16)=0 |